Shot retrieval based on fuzzy evolutionary aiNet and hybrid features

نویسندگان

  • Xian-Hui Li
  • Yongzhao Zhan
  • Jia Ke
  • Hongwei Zheng
چکیده

As the multimedia data increasing exponentially, how to get the video data we need efficiently become so important and urgent. In this paper, a novel method for shot retrieval is proposed, which is based on fuzzy evolutionary aiNet and hybrid features. To begin with, the fuzzy evolutionary aiNet algorithm proposed in this paper is utilized to extract key-frames in a video sequence. Meanwhile, to represent a keyframe, hybrid features of color feature, texture feature and spatial structure feature are extracted. Then, the features of key-frames in the same shot are taken as an ensemble and mapped to high dimension space by non-linear mapping, and the result obeys Gaussian distribution. Finally, shot similarity is measured by the probabilistic distance between distributions of the key-frame feature ensembles for two shots, and similar shots are retrieved effectively by using this method. Experimental results show the validity of this proposed method. 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A Shot Boundary Detection Method for News Video Based on Rough-Fuzzy Sets

With the rapid growing amount of multimedia, content-based information retrieval has become more and more important. As a crucial step in content-based news video indexing and retrieval system, shot boundary detection attracts much more research interests in recent years. To partition news video into shots, many metrics were constructed to measure the similarity among video frames based on all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers in Human Behavior

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2011